Advertisements
Advertisements
प्रश्न
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
उत्तर
RHS,
`(2 tan^2 30°)/(1 – tan^2 30°) = (2 (1)/sqrt3)/(1– 1/3) = (2/sqrt3)/(2/3) `
= `2/sqrt3 ÷ 2/3`
= `cancel2/sqrt3 xx3/cancel2`
= `3/sqrt3 = (sqrt3 xx (cancelsqrt3))/cancelsqrt3 `
= `sqrt3`
LHS,
tan (2 x 30°) = tan 60° = `sqrt3`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
sin 2A = 2 sin A is true when A = ______.
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If sin x = cos x and x is acute, state the value of x
find the value of: sin2 30° + cos2 30°+ cot2 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Prove that : sec245° - tan245° = 1
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: 2 sin3x = `sqrt(3)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
If 2 sin 2θ = `sqrt(3)` then the value of θ is