मराठी

prove that: tan (2 x 30°) = 2 tan 30 ° 1 – tan 2 30 ° - Mathematics

Advertisements
Advertisements

प्रश्न

prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`

बेरीज

उत्तर

RHS,

`(2 tan^2 30°)/(1 – tan^2 30°) = (2 (1)/sqrt3)/(1– 1/3) = (2/sqrt3)/(2/3) `

= `2/sqrt3 ÷ 2/3`

= `cancel2/sqrt3 xx3/cancel2`

= `3/sqrt3 = (sqrt3 xx (cancelsqrt3))/cancelsqrt3 `

= `sqrt3`

LHS,
tan (2 x 30°) = tan 60° = `sqrt3`
LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 4.3 | पृष्ठ २९१

संबंधित प्रश्‍न

sin 2A = 2 sin A is true when A = ______.


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


Evaluate tan 35° tan 40° tan 50° tan 55°


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


If sin x = cos x and x is acute, state the value of x


find the value of: sin2 30° + cos2 30°+ cot2 45°


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Prove that : sec245° - tan245° = 1


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


Find the value of x in the following:  2 sin3x = `sqrt(3)`


Find the value of x in the following: `sqrt(3)sin x` = cos x


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×