Advertisements
Advertisements
प्रश्न
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
उत्तर
A = 30° and B = 60°
L.H.S.
= sin(A + B)
= sin(30° + 60°)
= sin90°
= 1
R.H.S.
= sinA cosB cosA sinB
= sin30° x cos60° + cos30° x sin60°
= `(1)/(2) xx (1)/(2) + sqrt(3)/(2) xx sqrt(3)/(2)`
= `(1)/(4) + (3)/(4)`
= `(4)/(4)`
= 1
⇒ sin(A + B) = sinA cosB + cosA sinB.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If sin x = cos x and x is acute, state the value of x
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Prove that : sec245° - tan245° = 1
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If sin(A +B) = 1(A -B) = 1, find A and B.
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Verify the following equalities:
1 + tan2 30° = sec2 30°