Advertisements
Advertisements
प्रश्न
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
उत्तर
tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
L.H.S. :
tan(A - B) = tan(60° - 60°) - tan0° = 0
R.H.S. :
`(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
= `(tan 60° - tan60°)/(1 + tan60° tan60°)`
= `(sqrt(3) - sqrt(3))/(1 + sqrt(3) xx sqrt(3)`
= 0
L.H.S = R.H.S.
Therefore,
tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether sin θ increases or decreases as θ increases
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Solve for x : tan2 (x - 5°) = 3
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
Find the value 'x', if:
The perimeter of a rhombus is 100 cm and obtuse angle of it is 120°. Find the lengths of its diagonals.
Evaluate the following: `(sec34°)/("cosec"56°)`
Evaluate the following: sin28° sec62° + tan49° tan41°
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ