Advertisements
Advertisements
प्रश्न
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
उत्तर
sin(A - B) = sinA cosB - cosA sinB
L.H.S. :
sin(A - B) = sin(60°- 60°) = sin0° = 0
R.H.S. :
sinA cosB - cosA sinB
= sin60° cos60° - cos60° sin60°
= `sqrt(3)/(2) xx (1)/(2) - (1)/(2) xx sqrt(3)/(2)`
= `sqrt(3)/(4) - sqrt(3)/(4)`
= 0
L.H.S = R.H.S.
Therefore,
sin(A - B) = sinA cosB - cosA sinB.
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (sin A - 1) (2 cos A - 1) = 0
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Find the value of 'A', if cot 3A = 1
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
The perimeter of a rhombus is 100 cm and obtuse angle of it is 120°. Find the lengths of its diagonals.
Evaluate the following: cot27° - tan63°
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ