Advertisements
Advertisements
प्रश्न
The perimeter of a rhombus is 100 cm and obtuse angle of it is 120°. Find the lengths of its diagonals.
उत्तर
Consider the following figure,
Perimeter of rhombus = 100cm
⇒ PQ = QR = RS = SP = `(100)/(4)` = 25cm
Diagonals of a rhombus bisect each other ar right angles.
⇒ PO = OR and QO = OS
And,
∠POQ = ∠ROQ = ∠ROS = ∠POS = 90°
Also, diagonals bisect the angle at vertex.
⇒ `∠"PQO" = (1)/(2) ∠"POQ" = (1)/(2) xx 120° = 60°`
Now, In right ΔPQR,
sin(∠PQO) = `"OP"/"PQ"`
⇒ sin60° = `"OP"/(25)`
⇒ `sqrt(3)/(2) = "OP"/(25)`
⇒ OP = `(25sqrt(3))/(2)`
∴ PR
= 2 x OP
= `2 xx (25sqrt(3))/(2)`
= `25sqrt(3)"cm"`
Also,
cos(∠PQO) = `"OQ"/"PQ"`
⇒ cos60 = `"OQ"/(25)`
⇒ `(1)/(2) = "OQ"/(25)`
⇒ OQ = `(25)/(2)`
∴ SQ
= 2 x OQ
= `2 xx (25)/(2)`
= 25cm.
APPEARS IN
संबंधित प्रश्न
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
State for any acute angle θ whether cos θ increases or decreases as θ increases.
Find the value of 'A', if (1 - cosec A)(2 - sec A) = 0
Find the length of EC.
In the given figure, if tan θ = `(5)/(13), tan α = (3)/(5)` and RS = 12m, find the value of 'h'.
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
Evaluate the following: cot27° - tan63°
Evaluate the following: cosec 54° - sec 36°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
Prove the following: sin58° sec32° + cos58° cosec32° = 2