Advertisements
Advertisements
प्रश्न
The perimeter of a rhombus is 100 cm and obtuse angle of it is 120°. Find the lengths of its diagonals.
उत्तर
Consider the following figure,
Perimeter of rhombus = 100cm
⇒ PQ = QR = RS = SP = `(100)/(4)` = 25cm
Diagonals of a rhombus bisect each other ar right angles.
⇒ PO = OR and QO = OS
And,
∠POQ = ∠ROQ = ∠ROS = ∠POS = 90°
Also, diagonals bisect the angle at vertex.
⇒ `∠"PQO" = (1)/(2) ∠"POQ" = (1)/(2) xx 120° = 60°`
Now, In right ΔPQR,
sin(∠PQO) = `"OP"/"PQ"`
⇒ sin60° = `"OP"/(25)`
⇒ `sqrt(3)/(2) = "OP"/(25)`
⇒ OP = `(25sqrt(3))/(2)`
∴ PR
= 2 x OP
= `2 xx (25sqrt(3))/(2)`
= `25sqrt(3)"cm"`
Also,
cos(∠PQO) = `"OQ"/"PQ"`
⇒ cos60 = `"OQ"/(25)`
⇒ `(1)/(2) = "OQ"/(25)`
⇒ OQ = `(25)/(2)`
∴ SQ
= 2 x OQ
= `2 xx (25)/(2)`
= 25cm.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if sin 3 A = `sqrt3 /2`
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
State for any acute angle θ whether cos θ increases or decreases as θ increases.
Solve the following equation for A, if 2 sin 3 A = 1
Solve the following equation for A, if `sqrt3` cot 2 A = 1
Solve for x : tan2 (x - 5°) = 3
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
Find the value 'x', if:
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`