Advertisements
Advertisements
प्रश्न
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
उत्तर
tan x = `"CD"/"AC"`
⇒ `(5)/(12) = "CD"/"AC"`
⇒ 5 x AC = 12 x CD
⇒ 5(AB + BC) = 12CD
⇒ 5(48 + BC) = 12CD
⇒ 48 + BC = `(12"CD")/(5)` ....(i)
tan y = `"CD"/"BC"`
⇒ `(3)/(4) = "CD"/"BC"`
⇒ 3BC = 4CD
⇒ BC = `(6"CD")/(3)` ....(ii)
Substituting (ii) in (i), we have
`48 + (4"CD")/(3) = (12"CD")/(5)`
⇒ `(12"CD")/(5) - (4"CD")/(3)` = 48
⇒ `(36"CD" - 20"CD")/(15)` = 48
⇒ 16CD = 720
⇒ CD = 45m.
APPEARS IN
संबंधित प्रश्न
Solve for x : sin (x + 10°) = `(1)/(2)`
Solve for x : cos2 30° + sin2 2x = 1
Find the value of 'A', if `sqrt(3)cot"A"` = 1
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15units, find the remaining angles and sides.
Find:
a. BC
b. AD
c. AC
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: sin22° cos44° - sin46° cos68°
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`