Advertisements
Advertisements
प्रश्न
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
उत्तर
Since ∠B is right angled ⇒ ∠B = 90°
In ΔABC,
∠A + ∠B + ∠C = 180°
But ∠A = ∠C
⇒ ∠A + 90° + ∠A = 180°
⇒ 2∠A = 90°
⇒ ∠A = 45° = ∠C
(i) sinA cosC + cosA sinC
= sin45° cos45° + cos45° sin45°
= `(1)/sqrt(2) xx (1)/sqrt(2) + (1)/sqrt(2) xx (1)/sqrt(2)`
= `(1)/(2) + (1)/(2)`
= 1
(ii) sinA sinB + cosA cosB
sin45° sin90° + cos45° cos90°
= `(1)/sqrt(2) xx 1 + (1)/sqrt(2) xx 0`
= `(1)/sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
find the value of: tan 30° tan 60°
find the value of: cos2 60° + sin2 30°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
For any angle θ, state the value of: sin2 θ + cos2 θ
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Evaluate: sin2 60° + 2tan 45° – cos2 30°.