Advertisements
Advertisements
प्रश्न
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
उत्तर
`(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
= `(5(2)^2 - (0))/(4 xx (sqrt(3))^2`
= `20/(4 xx 3)`
= `5/3`
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following
`sec 11^@/(cosec 79^@)`
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B