Advertisements
Advertisements
Question
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Solution
`(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
= `(5(2)^2 - (0))/(4 xx (sqrt(3))^2`
= `20/(4 xx 3)`
= `5/3`
APPEARS IN
RELATED QUESTIONS
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
The value of 5 sin2 90° – 2 cos2 0° is ______.