Advertisements
Advertisements
Question
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Solution
sin(A - B) = `(1)/(2)`
⇒ sin(A - B) = sin30°
⇒ A - B = 30° ......(i)
cos(A + B) = `(1)/(2)`
⇒ cos(A + B) = cos60°
⇒ A + B = 60° ........(ii)
Adding (i) and (ii)
A - B + A + B = 30° + 60°
⇒ 2A = 90°
⇒ A = 45°
Substituting value of A in (i)
A - B = 30°
45° - B = 30°
B = 15°
Therefore,
A = 45° and B = 15°.
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: tan 30° tan 60°
secθ . Cot θ= cosecθ ; write true or false
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Verify the following equalities:
1 + tan2 30° = sec2 30°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.