English

If tan(A - B) = 1 √ 3 and tan(A + B) = √ 3 , find A and B. - Mathematics

Advertisements
Advertisements

Question

If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.

Sum

Solution

tan(A - B) = `(1)/sqrt(3)`

⇒ tan(A - B) = tan30°
⇒ A - B = 30° ......(i)
tan(A + B) = `sqrt(3)`
⇒ tan(A + B) = tan60°
⇒ A + B = 60° ........(ii)
Adding (i) and (ii)
A - B + A + B = 30° + 60°
⇒ 2A = 90°
⇒ A = 45°
Substituting value of A in (i)
A - B = 30°
45° - B = 30°
B = 15°
Therefore,
A = 45° and B = 15°.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 24

RELATED QUESTIONS

Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


find the value of: cos2 60° + sin2 30°


find the value of: cos2 60° + sec2 30° + tan2 45°


If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ


secθ . Cot θ= cosecθ ; write true or false


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×