English

Without using tables, find the value of the following: tan 45 ° cosec 30 ° + sec 60 ° cot 45 ° − 5 sin 90 ° 2 cos 0 ° - Mathematics

Advertisements
Advertisements

Question

Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`

Sum

Solution

`(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`

= `(1)/(2) + (2)/(1) - (5 xx 1)/(2 xx 1)`

= `(1)/(2) + (2)/(1) - (5)/(2)`

= `(1 + 4 - 5)/(2)`
= 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 2.3

RELATED QUESTIONS

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


Find the value of θ in each of the following :

(i) 2 sin 2θ = √3      (ii) 2 cos 3θ = 1


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


Find the value of:

tan2 30° + tan2 45° + tan2 60°


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


secθ . Cot θ= cosecθ ; write true or false


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Prove that : sec245° - tan245° = 1


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×