English

Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°. - Mathematics

Advertisements
Advertisements

Question

Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.

Sum

Solution

cosec330° cos60° tan345° sin290° sec245° cot30°.

sin30° = `(1)/(2)`
cosec30° = 2

cos60° = `(1)/(2)`
sec60° = 2

cos45° = `(1)/sqrt(2)`
sec45° = `sqrt(2)`
tan45° = 1
sin90° = 1

tan30° = `(1)/sqrt(3)`
⇒ cot30° = `sqrt(3)`
cosec330° cos60° tan345° sin290° sec245° cot30°

= `(2)^3(1/2)(1)^3(1)^2(sqrt(2))^2(sqrt(3))`

= `8 xx (1)/(2) xx 2 xx sqrt(3)`
= `8sqrt(3)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 1.08

RELATED QUESTIONS

Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Prove that

sin (70° + θ) − cos (20° − θ) = 0


Prove that

tan (55° − θ) − cot (35° + θ) = 0


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


If sin x = cos x and x is acute, state the value of x


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


Prove that:

cosec2 45°  - cot2 45°  = 1


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using table, find the value of the following:

`(sin30° - sin90° +  2cos0°)/(tan30° tan60°)` 


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


If sin 30° = x and cos 60° = y, then x2 + y2 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×