Advertisements
Advertisements
Question
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Solution
cosec330° cos60° tan345° sin290° sec245° cot30°.
sin30° = `(1)/(2)`
cosec30° = 2
cos60° = `(1)/(2)`
sec60° = 2
cos45° = `(1)/sqrt(2)`
sec45° = `sqrt(2)`
tan45° = 1
sin90° = 1
tan30° = `(1)/sqrt(3)`
⇒ cot30° = `sqrt(3)`
cosec330° cos60° tan345° sin290° sec245° cot30°
= `(2)^3(1/2)(1)^3(1)^2(sqrt(2))^2(sqrt(3))`
= `8 xx (1)/(2) xx 2 xx sqrt(3)`
= `8sqrt(3)`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If sin x = cos x and x is acute, state the value of x
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cosec2 45° - cot2 45° = 1
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
If sin 30° = x and cos 60° = y, then x2 + y2 is