English

If A =30o, then prove that : sin 3A = 3 sin A - 4 sin3A - Mathematics

Advertisements
Advertisements

Question

If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.

Sum

Solution

Given A = 30°

sin 3A = sin 3(30°)
= sin 90°
=1

3 sin A – 4 sin3A = 3 sin 30° – 4 sin330°

=`3(1/2) – 4(1/2)^3`

= `(3)/(2) – (1)/(2)`

= 1

∴ sin 3A = 3 sin A – 4 sin3A

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [Page 293]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 2.4 | Page 293

RELATED QUESTIONS

Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate the following :

`cos 19^@/sin 71^@`


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


find the value of: cosec2 60° - tan2 30°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

cosec2 45°  - cot2 45°  = 1


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Find the value of x in the following: `sqrt(3)sin x` = cos x


Find the value of x in the following: tan x = sin45° cos45° + sin30°


Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Verify the following equalities:

sin2 60° + cos2 60° = 1


Verify the following equalities:

1 + tan2 30° = sec2 30°


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


Verify cos3A = 4cos3A – 3cosA, when A = 30°


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×