Advertisements
Advertisements
Question
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Solution
Given A = 30°
sin 3A = sin 3(30°)
= sin 90°
=1
3 sin A – 4 sin3A = 3 sin 30° – 4 sin330°
=`3(1/2) – 4(1/2)^3`
= `(3)/(2) – (1)/(2)`
= 1
∴ sin 3A = 3 sin A – 4 sin3A
APPEARS IN
RELATED QUESTIONS
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cosec2 60° - tan2 30°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
cosec2 45° - cot2 45° = 1
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: tan x = sin45° cos45° + sin30°
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Verify cos3A = 4cos3A – 3cosA, when A = 30°
If 2 sin 2θ = `sqrt(3)` then the value of θ is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).