Advertisements
Advertisements
Question
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
Solution
Given A = 60° and B = 30°
LHS = sin(A + B)
= sin (60° + 30°)
= sin 90°
= 1
RHS = sin A cos B + cos A sin B
= sin 60° cos 30° + cos 60° sin 30°
= `(sqrt3)/(2) (sqrt3)/(2) + (1)/(2) (1)/(2)`
= `(3)/(4) + (1)/(4)`
= 1
LHS = RHS
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
sin 2A = 2 sin A is true when A = ______.
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
Prove that:
sin 60° = 2 sin 30° cos 30°
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: cos2 60° + sin2 30°
find the value of: cos2 60° + sec2 30° + tan2 45°
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.