English

Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°. - Mathematics

Advertisements
Advertisements

Question

Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.

Sum

Solution

sin230° sin245° + sin260° sin290°

sin30° = `(1)/(2)`

sin45° = `(1)/sqrt(2)`

sin60° = `sqrt(3)/(2)`

sin90° = 1
sin230° sin245° + sin260° sin290°

= `(1/2)^2 (1/sqrt(2))^2 + (sqrt(3)/2)^2 1`

= `(1)/(4) xx (1)/(2) + (3)/(4)`

= `(1)/(8) + (3)/(4)`

= `(1 + 6)/(8)`

= `(7)/(8)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 1.04

RELATED QUESTIONS

If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Prove the following :

`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ -  theta)) + tan (90^@ - theta)/cot theta = 2`


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


If sin x = cos y, then x + y = 45° ; write true of false


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


find the value of: cosec2 60° - tan2 30°


find the value of: sin2 30° + cos2 30°+ cot2 45°


find the value of: cos2 60° + sec2 30° + tan2 45°


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Prove that : cos60° . cos30° - sin60° . sin30° = 0


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×