Advertisements
Advertisements
Question
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Solution
sec45° sin45° - sin30° sec60°.
cos45° = `(1)/sqrt(2)`
⇒ sec45° = `sqrt(2)`
sin45° = `(1)/sqrt(2)`
sin30° = `(1)/(2)`
cos60° = `(1)/(2)`
⇒ sec60° = 2
sec45° sin45° - sin30° sec60°
= `sqrt(2) xx (1)/sqrt(2) - (1)/sqrt(2) xx 2`
= 1 - 1
= 0.
APPEARS IN
RELATED QUESTIONS
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Prove that
sin (70° + θ) − cos (20° − θ) = 0
find the value of: sin 30° cos 30°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: tan 30° tan 60°
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Verify the following equalities:
sin2 60° + cos2 60° = 1
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.