Advertisements
Advertisements
Question
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Solution
3 sin2 30° + 2 tan2 60° – 5 cos2 45°
= `3(1/2)^2 +2(sqrt3)^2 – 5(1/sqrt2)^2`
= `(3)/(4)+6 –(5)/(2)`
= `(3 + 24 – 10)/(4)`
= `4(1)/(4)`
APPEARS IN
RELATED QUESTIONS
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate cos 48° − sin 42°
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of: sin2 30° + cos2 30°+ cot2 45°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`