English

find the value of : 3sin2 30° + 2tan2 60° - 5cos2 45° - Mathematics

Advertisements
Advertisements

Question

find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°

Sum

Solution

3 sin2 30° + 2 tan2 60° – 5 cos2 45° 

= `3(1/2)^2 +2(sqrt3)^2 – 5(1/sqrt2)^2`

= `(3)/(4)+6 –(5)/(2)`

= `(3 + 24 – 10)/(4)`

= `4(1)/(4)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 2.3 | Page 291

RELATED QUESTIONS

sin 2A = 2 sin A is true when A = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate cos 48° − sin 42°


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

cosec 31° − sec 59°


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


find the value of: sin2 30° + cos2 30°+ cot2 45°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using table, find the value of the following:

`(sin30° - sin90° +  2cos0°)/(tan30° tan60°)` 


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×