Advertisements
Advertisements
Question
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Solution
cosec245° sec230° - sin230° - 4cot245° + sec260°.
sin45° = `(1)/sqrt(2)`
cosec45° = `sqrt(2)/(1)`
sin30° = `(1)/(2)` = cos60°
sec60° = 2
cos30° = `sqrt(3)/(2)`
sec30° = `(2)/sqrt(3)`
tan45° = 1
cot45° = 1
cosec245° sec230° - sin230° - 4cot245° + sec260°
= `(sqrt(2)/1)^2 (2/sqrt(3))^2 - (1/2)^2 - 4(1)^2 + (2)^2`
= `2 xx (4)/(3) - (1)/(4) - 4 + 4`
= `(8)/(3) - (1)/(4)`
= `(32 - 3)/(12)`
= `(29)/(12)`.
APPEARS IN
RELATED QUESTIONS
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
find the value of: tan 30° tan 60°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.