English

Given A = 60° and B = 30°, prove that: tan (A - B) = ABABtanA – tanB1+tanA.tanB - Mathematics

Advertisements
Advertisements

Question

Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`

Sum

Solution

LHS = tan(A – B) 

= tan (60° – 30°)

= tan30°

= `(1)/(sqrt3)`

RHS = `(tan"A"  –  tan"B")/(1 + tan 60°. tan 30°)`

= `(tan60° –  tan30°)/(1+tan 60°.tan30°)`

= `(sqrt3  –  1/(sqrt3))/(1 + sqrt3(1/sqrt3))`

= `(2)/(2sqrt3)`

= `(1)/sqrt3`

LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [Page 293]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 1.4 | Page 293

RELATED QUESTIONS

Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


sin 2A = 2 sin A is true when A = ______.


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


Find the value of:

tan2 30° + tan2 45° + tan2 60°


Prove that:
sin 60° = 2 sin 30° cos 30°


find the value of: sin2 30° + cos2 30°+ cot2 45°


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×