Advertisements
Advertisements
Question
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
Solution
LHS = tan(A – B)
= tan (60° – 30°)
= tan30°
= `(1)/(sqrt3)`
RHS = `(tan"A" – tan"B")/(1 + tan 60°. tan 30°)`
= `(tan60° – tan30°)/(1+tan 60°.tan30°)`
= `(sqrt3 – 1/(sqrt3))/(1 + sqrt3(1/sqrt3))`
= `(2)/(2sqrt3)`
= `(1)/sqrt3`
LHS = RHS
APPEARS IN
RELATED QUESTIONS
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
sin 2A = 2 sin A is true when A = ______.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Prove that:
sin 60° = 2 sin 30° cos 30°
find the value of: sin2 30° + cos2 30°+ cot2 45°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If 2 sin 2θ = `sqrt(3)` then the value of θ is