Advertisements
Advertisements
Question
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Solution
We have to prove sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Left-hand side
`= sin theta.sin(90^@ - theta) - cos theta.cos(90^@ - theta)`
`= sin theta.cos theta - cos thete.sin theta`
`= sin theta (cos theta -cos theta)`
= 0
=Right hand side
Proved
APPEARS IN
RELATED QUESTIONS
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following
`sec 11^@/(cosec 79^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
The value of 5 sin2 90° – 2 cos2 0° is ______.