Advertisements
Advertisements
Question
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
Solution
A = 30° and B = 60°
L.H.S.
= cos(A + B)
= cos(30° + 60°)
= cos90°
= 0
R.H.S.
= cosA cosB - sinA sinB
= cos30° x cos60° - sin30° x sin60°
= `sqrt(3)/(2) xx (1)/(2) - (1)/(2) xx sqrt(3)/(2)`
= `sqrt(3)/(4) - sqrt(3)/(4)`
= 0
⇒ cos(A + B) = cosA cosB - sinA sinB
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
find the value of: sin2 30° + cos2 30°+ cot2 45°
find the value of: cos2 60° + sec2 30° + tan2 45°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Prove that : sec245° - tan245° = 1
Find the value of x in the following: 2 sin3x = `sqrt(3)`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
The value of 5 sin2 90° – 2 cos2 0° is ______.
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).