English

If A = 30° and B = 60°, verify that: sin(A + B) cosA . cosB = tanA + tanB - Mathematics

Advertisements
Advertisements

Question

If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB

Sum

Solution

A = 30° and B = 60°
L.H.S.
= `(sin("A" + "B"))/(cos"A" . cos"B")`

= `(sin(30° + 60° ))/(cos30° xx cos60°)`

= `(sin"90°)/(cos30° xx cos60°)`

= `(1)/(sqrt(3)/(2) xx (1)/(2)`

= `(4)/sqrt(2)`
R.H.S.
= tanA + tanB
= tan30° + tan60° 

= `(1)/sqrt(3) + sqrt(3)`

= `(1 + 3)/sqrt(3)`

= `(4)/sqrt(3)`

⇒ `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 16.3

RELATED QUESTIONS

Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


If x = 30°, verify that

(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`

(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


`(2 tan 30°)/(1+tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


find the value of: cosec2 60° - tan2 30°


find the value of: sin2 30° + cos2 30°+ cot2 45°


Prove that:

cosec2 45°  - cot2 45°  = 1


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Prove that : sec245° - tan245° = 1


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


Find the value of the following:

sin2 30° – 2 cos3 60° + 3 tan4 45°


Verify cos3A = 4cos3A – 3cosA, when A = 30°


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×