Advertisements
Advertisements
Question
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
Solution
A = 30° and B = 60°
L.H.S.
= `(sin("A" + "B"))/(cos"A" . cos"B")`
= `(sin(30° + 60° ))/(cos30° xx cos60°)`
= `(sin"90°)/(cos30° xx cos60°)`
= `(1)/(sqrt(3)/(2) xx (1)/(2)`
= `(4)/sqrt(2)`
R.H.S.
= tanA + tanB
= tan30° + tan60°
= `(1)/sqrt(3) + sqrt(3)`
= `(1 + 3)/sqrt(3)`
= `(4)/sqrt(3)`
⇒ `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB.
APPEARS IN
RELATED QUESTIONS
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
`(2 tan 30°)/(1+tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
find the value of: cosec2 60° - tan2 30°
find the value of: sin2 30° + cos2 30°+ cot2 45°
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
Verify cos3A = 4cos3A – 3cosA, when A = 30°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`