Advertisements
Advertisements
Question
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Solution
A = 30° and B = 60°
L.H.S.
= `(sin("A" -"B"))/(sin"A" . sin"B")`
= `(sin(30° - 60°))/(sin30° xx sin60°)`
= `(-sin"30°)/(sin30° xx sin60°)`
= `(-(1)/(2))/((1)/(2) xx sqrt(3)/(2)`
= `-(2)/sqrt(3)`
R.H.S.
= cotB - cotA
= cot60° - cot30°
= `(1)/sqrt(3) - sqrt(3)`
= `(1 - 3)/sqrt(3)`
= `-(2)/sqrt(3)`
⇒ `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA.
APPEARS IN
RELATED QUESTIONS
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cos2 60° + sin2 30°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`