English

Prove that: 4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2 - Mathematics

Advertisements
Advertisements

Question

Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2

Sum

Solution

LHS = `4(sin^4 30°+  cos^4 60°)- 3(cos^2 45° –  sin^2 90°)`

= `4[(1/2)^4 + (1/2)^4] – 3[(1/sqrt2)^2 + (1)^4]`

= `4[ (1)/(16) + (1)/(16) ] – 3[ (1)/(2) – 1]`

= `(4 xx 2 )/(16) + 3 xx (1)/(2)`

= 2 

RHS = 2

LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 6.2 | Page 291

RELATED QUESTIONS

Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


find the value of: cos2 60° + sin2 30°


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


secθ . Cot θ= cosecθ ; write true or false


Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


If sin(A +B) = 1(A -B) = 1, find A and B.


Verify the following equalities:

1 + tan2 30° = sec2 30°


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


If sin 30° = x and cos 60° = y, then x2 + y2 is


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×