Advertisements
Advertisements
Question
If sin 30° = x and cos 60° = y, then x2 + y2 is
Options
`1/2`
0
sin 90°
cos 90°
Solution
`1/2`
Explanation;
Hint:
sin 30° = x = `1/2`
cos 60° = y = `1/2`
x2 + y2 = `(1/2)^2 + (1/2)^2`
= `(1/4) + (1/4)`
= `(2/4)`
= `1/2`
APPEARS IN
RELATED QUESTIONS
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Prove that:
sin 60° = 2 sin 30° cos 30°
find the value of: cos2 60° + sec2 30° + tan2 45°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.