English

Without using tables, find the value of the following: sin 30 ° sin 45 ° + tan 45 ° sec 60 ° − sin 60 ° cot 45 ° − cos 30 ° sin 90 ° - Mathematics

Advertisements
Advertisements

Question

Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`

Sum

Solution

`(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`

= `(1/2)/(1/sqrt(2)) + (1)/(2) - (sqrt(3)/2)/(1) - (sqrt(3)/2)/(1)`

= `sqrt(2)/(2) + (1)/(2) - sqrt(3)/(2) - sqrt(3)/(2)`

= `(sqrt(2) + 1 - 2sqrt(3))/(2)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 2.2

RELATED QUESTIONS

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


find the value of: sin 30° cos 30°


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


Prove that:

cosec2 45°  - cot2 45°  = 1


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


Prove that:

cos2 30°  - sin2 30° = cos 60°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Prove that : sec245° - tan245° = 1


Find the value of x in the following: `2sin  x/(2)` = 1


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×