Advertisements
Advertisements
प्रश्न
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
उत्तर
`(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
= `(1/2)/(1/sqrt(2)) + (1)/(2) - (sqrt(3)/2)/(1) - (sqrt(3)/2)/(1)`
= `sqrt(2)/(2) + (1)/(2) - sqrt(3)/(2) - sqrt(3)/(2)`
= `(sqrt(2) + 1 - 2sqrt(3))/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If sin x = cos x and x is acute, state the value of x
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
Prove that:
cos2 30° - sin2 30° = cos 60°
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: `2sin x/(2)` = 1
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify cos3A = 4cos3A – 3cosA, when A = 30°
The value of 5 sin2 90° – 2 cos2 0° is ______.