Advertisements
Advertisements
प्रश्न
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
उत्तर
cosec330° cos60° tan345° sin290° sec245° cot30°.
sin30° = `(1)/(2)`
cosec30° = 2
cos60° = `(1)/(2)`
sec60° = 2
cos45° = `(1)/sqrt(2)`
sec45° = `sqrt(2)`
tan45° = 1
sin90° = 1
tan30° = `(1)/sqrt(3)`
⇒ cot30° = `sqrt(3)`
cosec330° cos60° tan345° sin290° sec245° cot30°
= `(2)^3(1/2)(1)^3(1)^2(sqrt(2))^2(sqrt(3))`
= `8 xx (1)/(2) xx 2 xx sqrt(3)`
= `8sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate cos 48° − sin 42°
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
find the value of: tan 30° tan 60°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.