Advertisements
Advertisements
प्रश्न
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
उत्तर
Given A = 60° and B = 30°
LHS = sin(A + B)
= sin (60° + 30°)
= sin 90°
= 1
RHS = sin A cos B + cos A sin B
= sin 60° cos 30° + cos 60° sin 30°
= `(sqrt3)/(2) (sqrt3)/(2) + (1)/(2) (1)/(2)`
= `(3)/(4) + (1)/(4)`
= 1
LHS = RHS
APPEARS IN
संबंधित प्रश्न
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Evaluate the following :
`cos 19^@/sin 71^@`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
find the value of: sin 30° cos 30°
find the value of: cos2 60° + sin2 30°
Prove that:
cos2 30° - sin2 30° = cos 60°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
The value of 5 sin2 90° – 2 cos2 0° is ______.