मराठी

Find the value of x in the following: tan x = sin45° cos45° + sin30° - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of x in the following: tan x = sin45° cos45° + sin30°

बेरीज

उत्तर

tan x = sin45° cos45° + sin30°

⇒ tan x = `(1)/sqrt(2) xx (1)/sqrt(2) + (1)/sqrt(2)`

⇒ tan x = `(1)/(2) + (1)/(2)`
⇒ tan x = 1
⇒ tan x = tan 45°
⇒ x = 45°.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 8.4

संबंधित प्रश्‍न

An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Evaluate cos 48° − sin 42°


Evaluate the following :

`cos 19^@/sin 71^@`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Prove the following :

`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ -  theta)) + tan (90^@ - theta)/cot theta = 2`


Prove that

tan (55° − θ) − cot (35° + θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


find the value of: tan 30° tan 60°


find the value of: cosec2 60° - tan2 30°


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If sin(A +B) = 1(A -B) = 1, find A and B.


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Verify the following equalities:

1 + tan2 30° = sec2 30°


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×