मराठी

Find the value of x in the following: √ 3 sin x = cos x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of x in the following: `sqrt(3)sin x` = cos x

बेरीज

उत्तर

`sqrt(3)sin x` = cos x
⇒ `"sin x"/cos x" = (1)/sqrt(3)`
⇒ tanx = tan30°
⇒ x = 30°.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 8.3

संबंधित प्रश्‍न

Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Prove the following :

`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ -  theta)) + tan (90^@ - theta)/cot theta = 2`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


find the value of: sin 30° cos 30°


find the value of: cos2 60° + sec2 30° + tan2 45°


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Prove that : sec245° - tan245° = 1


Find the value of x in the following:  2 sin3x = `sqrt(3)`


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×