Advertisements
Advertisements
प्रश्न
`(2 tan 30°)/(1-tan^2 30°)` = ______.
पर्याय
cos 60°
sin 60°
tan 60°
sin 30°
उत्तर
`(2 tan 30°)/(1-tan^2 30°)` = tan 60°
Explanation:
`(2 tan 30°)/(1-tan^2 30°)`
= `(2(1/sqrt3))/(1-(1/sqrt3)^2)`
= `(2/sqrt3)/(1-1/3)`
= `(2/sqrt3)/(2/3)`
= `sqrt3`
Out of the given alternatives, only tan 60° = `sqrt3`
Hence, tan 60° is correct.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Prove that:
cos2 30° - sin2 30° = cos 60°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`