मराठी

2tan30°1-tan230° = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`(2 tan 30°)/(1-tan^2 30°)` = ______.

पर्याय

  • cos 60°

  • sin 60°

  • tan 60°

  • sin 30°

MCQ
रिकाम्या जागा भरा

उत्तर

`(2 tan 30°)/(1-tan^2 30°)` = tan 60°

Explanation:

`(2 tan 30°)/(1-tan^2 30°)`

= `(2(1/sqrt3))/(1-(1/sqrt3)^2)`

= `(2/sqrt3)/(1-1/3)`

= `(2/sqrt3)/(2/3)`

= `sqrt3`

Out of the given alternatives, only tan 60° = `sqrt3`

Hence, tan 60° is correct.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.2 [पृष्ठ १८७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.2 | Q 2.4 | पृष्ठ १८७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


Prove that:

cos2 30°  - sin2 30° = cos 60°


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Find the value of x in the following: `sqrt(3)sin x` = cos x


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×