Advertisements
Advertisements
प्रश्न
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
उत्तर
`(cos 45°)/(sec 30° + cosec 30°)`
= `(1/sqrt2)/(2/sqrt3+2)`
= `(1/sqrt2)/((2 + 2sqrt3)/sqrt3)`
= `sqrt3/(sqrt2(2+2sqrt3))`
= `sqrt3/(2sqrt2+2sqrt6)`
= `(sqrt3(2sqrt6-2sqrt2))/(((2sqrt6)+2sqrt2)(2sqrt6-2sqrt2))`
= `(2sqrt3(sqrt6-sqrt2))/((2sqrt6)^2 - (2sqrt2)^2)`
= `(2sqrt3(sqrt6-sqrt2))/(24-8)`
= `(2sqrt3(sqrt6-sqrt2))/16`
= `(sqrt18-sqrt6)/8`
= `(3sqrt2 - sqrt6)/8`
APPEARS IN
संबंधित प्रश्न
sin 2A = 2 sin A is true when A = ______.
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If sin x = cos y, then x + y = 45° ; write true of false
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
If 2 sin 2θ = `sqrt(3)` then the value of θ is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.