Advertisements
Advertisements
प्रश्न
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
उत्तर
`(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
= `(1)/(2) + (2)/(1) - (5 xx 1)/(2 xx 1)`
= `(1)/(2) + (2)/(1) - (5)/(2)`
= `(1 + 4 - 5)/(2)`
= 0.
APPEARS IN
संबंधित प्रश्न
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
sin 2A = 2 sin A is true when A = ______.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If sin x = cos x and x is acute, state the value of x
If sin x = cos y, then x + y = 45° ; write true of false
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: cosec2 60° - tan2 30°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Find the value of x in the following: `2sin x/(2)` = 1
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.