मराठी

Without using tables, find the value of the following: tan 45 ° cosec 30 ° + sec 60 ° cot 45 ° − 5 sin 90 ° 2 cos 0 ° - Mathematics

Advertisements
Advertisements

प्रश्न

Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`

बेरीज

उत्तर

`(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`

= `(1)/(2) + (2)/(1) - (5 xx 1)/(2 xx 1)`

= `(1)/(2) + (2)/(1) - (5)/(2)`

= `(1 + 4 - 5)/(2)`
= 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 2.3

संबंधित प्रश्‍न

If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


Evaluate the following:

2tan2 45° + cos2 30° − sin2 60°


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


sin 2A = 2 sin A is true when A = ______.


Evaluate the following :

`cos 19^@/sin 71^@`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


If sin x = cos x and x is acute, state the value of x


If sin x = cos y, then x + y = 45° ; write true of false


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


find the value of: cosec2 60° - tan2 30°


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Find the value of x in the following: `2sin  x/(2)` = 1


Find the value of x in the following: tan x = sin45° cos45° + sin30°


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Find the value of the following:

sin2 30° – 2 cos3 60° + 3 tan4 45°


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×