मराठी

If A = B = 45° , show that: sin (A - B) = sin A cos B - cos A sin B - Mathematics

Advertisements
Advertisements

प्रश्न

If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B

बेरीज

उत्तर

Given that A = B = 45°

LHS = sin (A – B)

= sin ( 45° – 45°)

= sin 0°

= 0

RHS = sin A cos B – cos A sin B

= sin 45° cos 45° – cos 45° sin 45°

= `(1)/(sqrt2) (1)/(sqrt2) – (1)/(sqrt2) (1)/(sqrt2)`

= 0

LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 3.1 | पृष्ठ २९३

संबंधित प्रश्‍न

If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


`(2 tan 30°)/(1-tan^2 30°)` = ______.


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Prove that:
sin 60° = 2 sin 30° cos 30°


find the value of: tan 30° tan 60°


find the value of: cos2 60° + sin2 30°


find the value of: sin2 30° + cos2 30°+ cot2 45°


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


The value of 5 sin2 90° – 2 cos2 0° is ______.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×