English

If A = B = 45° , show that: sin (A - B) = sin A cos B - cos A sin B - Mathematics

Advertisements
Advertisements

Question

If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B

Sum

Solution

Given that A = B = 45°

LHS = sin (A – B)

= sin ( 45° – 45°)

= sin 0°

= 0

RHS = sin A cos B – cos A sin B

= sin 45° cos 45° – cos 45° sin 45°

= `(1)/(sqrt2) (1)/(sqrt2) – (1)/(sqrt2) (1)/(sqrt2)`

= 0

LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [Page 293]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 3.1 | Page 293

RELATED QUESTIONS

Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


Evaluate cos 48° − sin 42°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


find the value of: cosec2 60° - tan2 30°


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


For any angle θ, state the value of: sin2 θ + cos2 θ


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using table, find the value of the following:

`(sin30° - sin90° +  2cos0°)/(tan30° tan60°)` 


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Verify cos3A = 4cos3A – 3cosA, when A = 30°


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×