Advertisements
Advertisements
Question
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Solution
Given that A = B = 45°
LHS = cos (A + B)
= cos ( 45° + 45°)
= cos 90°
= 0
RHS = cos A cos B – sin A sin B
= cos 45° cos 45° – sin 45° sin 45°
= `(1)/(sqrt2) (1)/(sqrt2) – (1)/(sqrt2) (1)/(sqrt2)`
= 0
LHS = RHS
APPEARS IN
RELATED QUESTIONS
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
cosec 31° − sec 59°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
find the value of: sin 30° cos 30°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If sin x = cos x and x is acute, state the value of x
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: cos2 60° + sin2 30°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.