English

Prove that: sin (2 × 30°) = 2tan30°1+tan230° - Mathematics

Advertisements
Advertisements

Question

prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`

Sum

Solution

RHS = `(2 tan 30°)/(1+tan^2 30°) = (2xx1/(sqrt3))/(1 +(1/sqrt3)^2) = (2/(sqrt3))/(1+(1)/(3)) = (2/sqrt3)/(4/(3)) =2/sqrt3xx3/4=3/(2sqrt3)xxsqrt3/sqrt3=(3sqrt3)/(2xx3)= (sqrt3)/(2)`

LHS = sin (2 × 30°) = sin 60° = `(sqrt3)/(2)`

∴ LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 4.1 | Page 291

RELATED QUESTIONS

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: `(3 cos 55^@)/(7 sin 35^@) -  (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan  85^@))`


Evaluate: `sin 18^@/cos 72^@  + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


find the value of: sin 30° cos 30°


Find the value of:

tan2 30° + tan2 45° + tan2 60°


For any angle θ, state the value of: sin2 θ + cos2 θ


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


If sin(A +B) = 1(A -B) = 1, find A and B.


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Verify cos3A = 4cos3A – 3cosA, when A = 30°


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×