Advertisements
Advertisements
Question
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Solution
RHS = `(2 tan 30°)/(1+tan^2 30°) = (2xx1/(sqrt3))/(1 +(1/sqrt3)^2) = (2/(sqrt3))/(1+(1)/(3)) = (2/sqrt3)/(4/(3)) =2/sqrt3xx3/4=3/(2sqrt3)xxsqrt3/sqrt3=(3sqrt3)/(2xx3)= (sqrt3)/(2)`
LHS = sin (2 × 30°) = sin 60° = `(sqrt3)/(2)`
∴ LHS = RHS
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
find the value of: sin 30° cos 30°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
For any angle θ, state the value of: sin2 θ + cos2 θ
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Verify cos3A = 4cos3A – 3cosA, when A = 30°
If 2 sin 2θ = `sqrt(3)` then the value of θ is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`