Advertisements
Advertisements
Question
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Solution
Given that A = 30°
LHS = `(1 + sin2"A" + cos2"A")/(sin "A" + cos "A")`
= `(1 + sin2 (30°) + cos2 (30°))/(sin 30° + cos 30°)`
= `(1 +(sqrt3)/(2) + (1)/(2))/((1)/(2) + (sqrt3)/(2)`
= `(3 + sqrt3)/(sqrt3 + 1)((sqrt3 – 1)/(sqrt3– 1))`
= `(3 sqrt3 – 3 + 3 – sqrt3)/(2)`
= `2 (sqrt3)/(2)`
= `sqrt3`
RHS = 2 cos A
= 2 cos (30°)
= `2(sqrt3/2)`
= `sqrt3`
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If sin x = cos x and x is acute, state the value of x
find the value of: cos2 60° + sec2 30° + tan2 45°
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: 2 sin3x = `sqrt(3)`
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
If 2 sin 2θ = `sqrt(3)` then the value of θ is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
Evaluate: sin2 60° + 2tan 45° – cos2 30°.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`