English

If A = 30°; show that: 1 – cos 2 A sin 2 A = tan A - Mathematics

Advertisements
Advertisements

Question

If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`

Sum

Solution

Given that A = 30°

LHS = `(1 – cos2 "A")/(sin 2"A")`

= `(1 – cos 2 (30°))/(sin2 (30°))`

= `(1 – (1)/(2))/((sqrt3)/(2)`

= `(1)/(sqrt3)`

RHS = tan A

= tan 30°

= `(1)/(sqrt3)`

LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [Page 293]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.4 | Page 293

RELATED QUESTIONS

`(2 tan 30°)/(1-tan^2 30°)` = ______.


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


Find the value of:

tan2 30° + tan2 45° + tan2 60°


If sin x = cos x and x is acute, state the value of x


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using table, find the value of the following:

`(sin30° - sin90° +  2cos0°)/(tan30° tan60°)` 


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Prove that : sec245° - tan245° = 1


Find the value of x in the following: `2sin  x/(2)` = 1


Find the value of x in the following: `sqrt(3)sin x` = cos x


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


If sin 30° = x and cos 60° = y, then x2 + y2 is


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×