Advertisements
Advertisements
Question
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Solution
\[\sin67^\circ + \cos75c\]
\[ = \cos\left( 90^\circ - 67^\circ \right) + \sin\left( 90^\circ - 75^\circ \right)\]
\[ = \cos23^\circ + \sin15^\circ\]
APPEARS IN
RELATED QUESTIONS
Evaluate cos 48° − sin 42°
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Verify the following equalities:
1 + tan2 30° = sec2 30°
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`