Advertisements
Advertisements
Question
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Solution
Given A = 30°
2 cos2 A – 1 = 2 cos2 30° – 1
=`2(3/4) – 1`
= `(3)/(2) – 1`
= `(1)/(2)`
1 - 2 sin2A = 1 - 2 sin2 30°
= 1 - 2`(1/4)`
= `1/2`
∴ 2 cos2A – 1 = 1 – 2 sin2A
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
`(2 tan 30°)/(1+tan^2 30°)` = ______.
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: cos2 60° + sin2 30°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Verify the following equalities:
sin2 60° + cos2 60° = 1
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`