English

If A = 30o, then prove that : 2 cos2 A - 1 = 1 - 2 sin2A - Mathematics

Advertisements
Advertisements

Question

If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A

Sum

Solution

Given A = 30°

2 cos2 A – 1 = 2 cos2 30° – 1

=`2(3/4) – 1`

= `(3)/(2) – 1`

= `(1)/(2)`

1 - 2 sin2A = 1 - 2 sin2 30°

= 1 - 2`(1/4)`

= `1/2`

∴ 2 cos2A – 1 = 1 – 2 sin2A

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [Page 293]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 2.3 | Page 293

RELATED QUESTIONS

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


Evaluate the following:

2tan2 45° + cos2 30° − sin2 60°


`(2 tan 30°)/(1+tan^2 30°)` = ______.


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Prove the following :

`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ -  theta)) + tan (90^@ - theta)/cot theta = 2`


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: `(3 cos 55^@)/(7 sin 35^@) -  (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan  85^@))`


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


find the value of: cos2 60° + sin2 30°


If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Find the value of x in the following: `sqrt(3)sin x` = cos x


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


Verify the following equalities:

sin2 60° + cos2 60° = 1


Find the value of the following:

sin2 30° – 2 cos3 60° + 3 tan4 45°


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×