Advertisements
Advertisements
Question
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Solution
Cos (90° - θ) = sin A cosec (90 - θ) = sec θ
Sec (90° - θ) = cosec θ sin (90 - θ) = cos θ
Cot (90 - θ) = tan θ
`=> (sin theta cosec theta tan theta)/(sec theta. cos theta. tan theta) = (sin theta cosec theta)/(sec theta cos theta)` ` [∵ sin theta cosec theta = 1]`
=1 `[sec theta cos theta = 1]`
`tan (90^@ - theta)/cot theta = cot theta/cot theta = 1`
=> 1 + 1= 2
`:. LHS = RHS`
Hence proved
APPEARS IN
RELATED QUESTIONS
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that : sec245° - tan245° = 1
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA