हिंदी

If A = 30o, then prove that : 2 cos2 A - 1 = 1 - 2 sin2A - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A

योग

उत्तर

Given A = 30°

2 cos2 A – 1 = 2 cos2 30° – 1

=`2(3/4) – 1`

= `(3)/(2) – 1`

= `(1)/(2)`

1 - 2 sin2A = 1 - 2 sin2 30°

= 1 - 2`(1/4)`

= `1/2`

∴ 2 cos2A – 1 = 1 – 2 sin2A

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 2.3 | पृष्ठ २९३

संबंधित प्रश्न

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


find the value of: tan 30° tan 60°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×