Advertisements
Advertisements
प्रश्न
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
उत्तर
Given A = 30°
2 cos2 A – 1 = 2 cos2 30° – 1
=`2(3/4) – 1`
= `(3)/(2) – 1`
= `(1)/(2)`
1 - 2 sin2A = 1 - 2 sin2 30°
= 1 - 2`(1/4)`
= `1/2`
∴ 2 cos2A – 1 = 1 – 2 sin2A
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: tan 30° tan 60°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).