हिंदी

If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B

योग

उत्तर

A = 30° and B = 60°
L.H.S.
= cos(A + B)
= cos(30° + 60°)
 = cos90°
 = 0
R.H.S.
= cosA cosB - sinA sinB
= cos30° x cos60° - sin30° x sin60°

= `sqrt(3)/(2) xx (1)/(2) - (1)/(2) xx sqrt(3)/(2)`

= `sqrt(3)/(4) - sqrt(3)/(4)`
= 0
⇒ cos(A + B) = cosA cosB - sinA sinB

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 16.2

संबंधित प्रश्न

Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


Find the value of θ in each of the following :

(i) 2 sin 2θ = √3      (ii) 2 cos 3θ = 1


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`


Evaluate the following :

cosec 31° − sec 59°


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Prove that

sin (70° + θ) − cos (20° − θ) = 0


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Find the value of x in the following: `sqrt(3)sin x` = cos x


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


Verify the following equalities:

sin2 60° + cos2 60° = 1


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×