Advertisements
Advertisements
प्रश्न
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
उत्तर
A = 30° and B = 60°
L.H.S.
= cos(A + B)
= cos(30° + 60°)
= cos90°
= 0
R.H.S.
= cosA cosB - sinA sinB
= cos30° x cos60° - sin30° x sin60°
= `sqrt(3)/(2) xx (1)/(2) - (1)/(2) xx sqrt(3)/(2)`
= `sqrt(3)/(4) - sqrt(3)/(4)`
= 0
⇒ cos(A + B) = cosA cosB - sinA sinB
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Find the value of x in the following: `sqrt(3)sin x` = cos x
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
Verify the following equalities:
sin2 60° + cos2 60° = 1
If 2 sin 2θ = `sqrt(3)` then the value of θ is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.