Advertisements
Advertisements
प्रश्न
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
उत्तर
A = 30° and B = 60°
L.H.S.
= sin(A + B)
= sin(30° + 60°)
= sin90°
= 1
R.H.S.
= sinA cosB cosA sinB
= sin30° x cos60° + cos30° x sin60°
= `(1)/(2) xx (1)/(2) + sqrt(3)/(2) xx sqrt(3)/(2)`
= `(1)/(4) + (3)/(4)`
= `(4)/(4)`
= 1
⇒ sin(A + B) = sinA cosB + cosA sinB.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cos2 60° + sin2 30°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°