Advertisements
Advertisements
प्रश्न
Prove that
tan (55° − θ) − cot (35° + θ) = 0
उत्तर
\[\begin{array}{l} LHS =\tan( {55}^0 - \theta) - \cot( {35}^0 + \theta) \\ \end{array}\]
\[\begin{array}{l}=\tan{ {90}^0 - ( {35}^0 + \theta)} - \cot( {35}^0 + \theta) \\ \end{array}\]
\[\begin{array}{l}=\cot( {35}^0 + \theta) - \cot( {35}^0 + \theta) \\ \end{array}\]
= 0
= RHS
APPEARS IN
संबंधित प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
find the value of: cosec2 60° - tan2 30°
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10