Advertisements
Advertisements
प्रश्न
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
उत्तर
Tan (90 – A) = cot A
`=> (cot A.cot A)/(cosec^2 A) - cos^2 A`
`=> cot^2 A/cosec^2 A - cos^2 A`
`=> cos^2 A/sin^2 A - cos^2 A => cos^2 A cos^2 A = 0`
Hence proved
APPEARS IN
संबंधित प्रश्न
Show that tan 48° tan 23° tan 42° tan 67° = 1
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to